potpy Documentation
Release 0.0.1

David Zuwenden

January 20, 2013

CONTENTS

1 Installation 3
2 Hello World Example 5
3 More Examples 7
4 Overview 9
5 Module Listing 11
5.1 potpy.context —Contextmodule 11
5.2 potpy.router—Routermodule 12
5.3 potpy.template—Templatemodule 15
54 potpy.wsgi—WSGImodule 16
5.5 potpy.configparser —ConfigParsermodule 19
6 Indices and tables 21

Python Module Index 23

potpy Documentation, Release 0.0.1

PotPy lets you build applications in a very flexible way. You design objects based on your domain requirements, then
compose them together using PotPy’s flexible routing system. PotPy enables you to:

* Write simple, decoupled objects that work together in various ways.
* Easily test your objects, by not imposing a rigid object construction paradigm.

* Write WSGI components using TDD, without having to deal with WSGI conventions except at the edges of
the system.

PotPy was inspired by the Raptor project from the Ruby world.

CONTENTS 1

https://github.com/garybernhardt/raptor

potpy Documentation, Release 0.0.1

2 CONTENTS

CHAPTER
ONE

INSTALLATION

$ pip install potpy

For details, see the README file.
* GitHub project page
* PotPy on PyPI

https://github.com/dhain/potpy
http://pypi.python.org/pypi/potpy

potpy Documentation, Release 0.0.1

4 Chapter 1. Installation

20

21

22

23

24

25

26

27

28

29

39

40

41

42

43

CHAPTER
TWO

HELLO WORLD EXAMPLE

from potpy.wsgi import PathRouter, MethodRouter, App

Our domain objects

class Greeter (object):

"""A WSGI app that displays a greeting."""

def _ _init__ (self, greeting):
self.greeting = greeting

def _ _call_(self, environ, start_response):

start_response (200 OK’", [
(" Content-type’,
(" Content-length’,
1)

return [self.greeting]

def get_greeting(name) :

"text/plain’),
str(len(self.greeting))),

"""Generate a greeting for the given name."""

o

return ’'Hello, "% (name,)

PotPy plumbing
hello = MethodRouter (

(("GET’, 'HEAD'), [
"greeting’),

(get_greeting,

Greeter
1)

urls = PathRouter (
("hello’, "/hello/{name}’, hello),

when the request is a GET or HEAD
generate a greeting and save it
to the context under the

"greeting’ key

then show the greeting

expose the greeter at /hello/{name}

44

45

46

47

potpy Documentation, Release 0.0.1

’

if name ==

main

ro.

from wsgiref.simple_ server import make_server

make_server (',

8000,

App (urls)) .serve_forever ()

Chapter 2. Hello World Example

CHAPTER
THREE

MORE EXAMPLES

* Todo List example

https://github.com/dhain/potpy/tree/master/examples/todo

potpy Documentation, Release 0.0.1

8 Chapter 3. More Examples

CHAPTER
FOUR

OVERVIEW

PotPy is a generic routing apparatus. It allows you to develop applications by composing your domain objects together
into one or more “pipelines” for data to flow along. Composition is accomplished with the idea of a Context —return
values from handler functions along these routes can be added to the context, enabling later handler functions to access
them.

The magic happens when a context is injected into a callable. PotPy inspects the callable’s signature, and pulls values
out of the context by argument name. For example:

>>> from potpy.context import Context

>>> def my_callable(foo, bar, baz="default’):
do something cool
return 42

>>> ctx = Context (foo=’'some value’, bar=’"another wvalue’)

>>> ctx.inject (my_callable)
42

Building on the context, PotPy provides routes and routers. A Route is a list of callables that you define which get
called in order. These callables are actually called by injecting a context, as above. The same context is used to call
subsequent callables in the route, and these callables can either interact with the context directly, or their return value
may be added to the context by the Route object. This allows later callables in a route to access information produced
by earlier ones, which facilitates a very expressive style of application design.

A Router is an object that (typically) selects between various Routes given some condition. The Router class itself
is an abstract base class, although the potpy.wsgi module provides two concrete subclasses that route based on
specific WSGI environ variables (PEP 333). By subclassing the Router class and providing a match () method that
selects based on something specific to your problem domain, you can build powerful control flows between the objects
in your system with minimal effort.

The potpy.template, potpy.wsqgi, and potpy.configparser modules turn PotPy into a flexible HTTP
request routing system. Template objects allow string matching with parameter extraction, and the reverse — filling
parameters into a string from a mapping. The potpy.wsgi.PathRouter class utilizes these templates to make
URL-based routing convenient and easy. The configparser module enables you to specify a web application’s
URL layout in a simple declarative syntax, while being flexible enough to let you specify which HTTP methods (eg.
GET, POST, etc.) your domain objects should handle, and exception handlers.

http://www.python.org/dev/peps/pep-0333

potpy Documentation, Release 0.0.1

10 Chapter 4. Overview

CHAPTER
FIVE

MODULE LISTING

5.1 potpy.context — Context module

5.1.1 Module Contents

class potpy.context.Context
A dict class that can call callables with arguments from itself.

Best explained with an example:

>>> def answer (question, foo):
return ’'The answer to the question is: " % (question, foo)

>>> ctx = Context (foo=42, question='ultimate’)
>>> ctx.inject (answer)
"The answer to the ultimate question is: 42’

Callable items are called before being passed to the callable:

>>> ctx = Context (foo=lambda bar: bar.upper (), bar='qux’)
>>> ctx.inject (lambda foo: foo)
’ QUX'

Note: Callable items are called during __getitem__ ():

>>> Context (foo=lambda: 42) [’ foo’]
42

Contexts have ’ context’ as an implicit a member, so callables can refer to the context itself:

>>> ctx = Context (foo=’foo’)
>>> ctx.inject (lambda context: dict (context))
{"foo’: "foo'}

When injecting a call, you may override context items (or provide missing items) with keyword arguments:

>>> ctx.inject (lambda foo, bar: (foo, bar), bar="bar’)
(" foo’, ’"bar’)

Note: xargs-and »xkwargs-style arguments cannot be injected at this time.

11

potpy Documentation, Release 0.0.1

Note: Due to limitations of the i nspect module, builtin and extension functions cannot be injected. You may
work around this by wrapping the function in Python:

>>> ctx = Context (n=’"42")
>>> ctx.inject (lambda n: int (n))
42

inject (func, **kwargs)
Inject arguments from context into a callable.

Parameters
¢ func — The callable to inject arguments into.

o **kwargs — Specify values to override context items.

5.2 potpy.router — Router module

5.2.1 Module Contents

class potpy.router.Route (*handlers)
A list of handlers which can be called with a Context.

Initializer can also be called with a single (non-tuple) iterable of handlers. Each handler item is either a callable
oratuple: (handler, name, exception_handlers) —see add () for details of this tuple.

__call__ (context)
Call the handlers in the route, in order, with the given context.

add (handler, name=None, exception_handlers=())
Add a handler to the route.

Parameters
¢ handler — The “handler” callable to add.

e name — Optional. When specified, the return value of this handler will be added to the
context under name.

 exception_handlers — Optional. A list of (types, handler) tuples, where types
is an exception type (or tuple of types) to handle, and handler is a callable. See below
for example.

Exception Handlers

When an exception occurs in a handler, exc_info will be temporarily added to the context and the list of
exception handlers will be checked for an appropriate handler. If no handler can be found, the exception
will be re-raised to the caller of the route.

If an appropriate exception handler is found, it will be called (the context will be injected, so handlers may
take an exc_info argument), and its return value will be used in place of the original handler’s return
value.

Examples:

>>> from potpy.context import Context

12 Chapter 5. Module Listing

http://docs.python.org/library/inspect.html#inspect

potpy Documentation, Release 0.0.1

>>> route = Route ()
>>> route.add(lambda: {} [’ foo’], exception_handlers=][
(KeyError, lambda: ’'bar’)
1)

>>> route (Context ())
"bar’

>>> def read_line_from_file():
raise IOError () # simulate a failed read

>>> def retry_read():
return ’success!’ # simulate retrying the read

>>> def process_line(line):
return line.upper ()

>>> route = Route()

>>> route.add(read_line_from_file, "line’, [
return value will be added to context as ’1ine’
((OSError, IOError), retry_read)

1)

>>> route.add(process_line)

>>> route (Context ())

" SUCCESS !’

>>> route = Route()
>>> route.add(lambda: {}[’foo’], exception_handlers=]
(IndexError, lambda: ’'bar’) # does not handle KeyError
1)

>>> route (Context ()) # so exception will be re-raised here
Traceback (most recent call last):

KeyError: ’"foo’

previous
Refer to result of previous handler in route.
Example:

>>> from potpy.context import Context

>>> class MyClass:
def foo(self):
return 42

>>> route = Route(
MyClass, # instantiate MyClass
Route.previous.foo # refer to foo attribute of instance

)
>>> route (Context ())
42

context
Refer to a context item in route.

Example:

>>> from potpy.context import Context

>>> class MyClass:

5.2. potpy.router — Router module 13

potpy Documentation, Release 0.0.1

def foo(self):
return 42

>>> route = Route(
Route.context.inst.foo # refer to ctx[’inst’].foo

)
>>> route (Context (inst=MyClass()))
42

exception Stop (value=<class ‘potpy.router.NoValue’>)
Raise this exception to jump out of a route early.

If an argument is provided, it will be used as the route return value, otherwise the return value of the
previous handler will be returned.

Example::

>>> from potpy.context import Context

>>> def stopper|():
raise Route.Stop ('’ stops here’)

>>> def foobar():
return ’'never gets run’

>>> route = Route (stopper, foobar)
>>> route (Context ())
"stops here’

class potpy.router.Router (*routes)

Routes objects to handlers via a match () method.

When called with a Context and an object, that object will be checked against each registered handler for a
match. When a matching handler is found, the context is updated with the result of the match () method, and
the handler is called with the context.

Handlers are wrapped in Route objects, causing the context to be injected into the call. You may also add
Route objects directly.

The match () method of this class is unimplemented. You must subclass it and provide an appropriate match
method to define a Router. See potpy.wsgi.PathRouter and potpy.wsgi.MethodRouter for ex-
ample subclasses.

__call__ (context, obj)
Route the given object to a matching handler.

Parameters
» context — The Context object used when calling the matching handler.
* obj — The object to match against.

add (match, handler)
Register a handler with the Router.

Parameters

* match — The first argument passed to the mat ch () method when checking against this
handler.

14

Chapter 5. Module Listing

potpy Documentation, Release 0.0.1

* handler — A callable or Route instance that will handle matching calls. If not a Route
instance, will be wrapped in one.

match (match, obj)
Check for a match.

This method implements the routing logic of the Router. Handlers are registered with a mat ch argument,
which will be passed to this method when checking against that handler. When the Router is called with a
context and an object, it will iterate over its list of registered handlers, passing the corresponding mat ch
argument and the object to this method once for each, until a match is found. If this method returns a
dict, it signifies that the object matched against the current handler, and the context is updated with the
returned dict. To signify a non-match, this method returns None, and iteration continues.

Note: This method is unimplemented in the base class. See
potpy.wsgi.MethodRouter.match () for a concrete example.

Parameters
* match — The mat ch argument corresponding to a handler registered with add () .
¢ obj — The object to match against.

Returns A dict or None.

5.3 potpy.template — Template module

5.3.1 Module Contents

class potpy.template.Template (template, **type_converters)
A simple string template class.

Allows you to match against a string, extracting a dictionary of template parameters, with optional parameter
type conversion. An example template:

>>> t = Template(’Hello my name is {name}!’)

Using the match () method, you can extract information from a string:
>>> t.match(’Hello my name is David!’)
{"name’ : ’'David’}

>>> t.match(’'This string does not match.’)

Parameter type conversion allows you to coerce parameters to Python types:

>>> t = Template ('’ The answer is {answer}’, answer=int)
>>> t.match (' The answer is 427)
{"answer’: 42}

You can also specify a regex in your parameter spec to further refine matches:

>>> t = Template ('’ /posts/{post_id:\d+}’, post_id=int)
>>> t.match(’ /posts/37")

{’post_id’: 37}

>>> t.match(’ /posts/foo’)

The reverse of matching is filling. Use the £111 () method to insert information into your template string:

5.3. potpy.template — Template module 15

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict

potpy Documentation, Release 0.0.1

>>> t = Template ('’ The answer is {answer}’)
>>> t.fill (answer=42)
"The answer is 42’

£i11 (**kwargs)
Fill a template string with the given parameters.

>>> Template (' The answer is {answer}’).fill (answer=42)
"The answer is 42’

match (string)
Match a string against the template.

If the string matches the template, return a dict mapping template parameter names to converted values,
otherwise return None.

>>> t = Template(’Hello my name is {name}!’)
>>> t.match(’Hello my name is David!’)
{"name’ : ’'David’}

>>> t.match(’This string does not match.’)

5.4 potpy.wsgi— WSGI module

This module provides classes for creating WSGI (PEP 333) applications.

For a simple example, see examples/wsgi.py. For a more complete example, see examples/todo.

5.4.1 Module Contents

class potpy.wsgi.PathRouter (*routes)
Bases: potpy.router.Router

Route by URL/path.

Utilizes the Template class to capture path parameters, adding them to the Cont ext. For example, you might
define a route with a path template: /posts/{slug} — which would match the path /posts/my-post,
adding {’ slug’: ’'my-post’} tothe context:

>>> from potpy.context import Context

>>> from pprint import pprint

>>> handler = lambda: None # just a bogus handler
>>> router = PathRouter ((’/posts/{slug}’, handler))
>>> ctx = Context (path_info='/posts/my-post’)

>>> ctx.inject (router)

>>> pprint (dict (ctx))

{"path_info’: ’/posts/my-post’, ’slug’: 'my-post’}

Routes can also be named, allowing reverse path lookup and filling of path parameters. See reverse () for
details.

add ([name] template, handler)
Add a path template and handler.

Parameters

* name — Optional. If specified, allows reverse path lookup with reverse ().

16 Chapter 5. Module Listing

http://www.python.org/dev/peps/pep-0333

potpy Documentation, Release 0.0.1

* template — A string or Template instance used to match paths against. Strings will be
wrapped in a Template instance.

* handler — A callable or Route instance which will handle calls for the given path. See
potpy.router.Router.add () for details.

reverse (name, **kwargs)
Look up a path by name and fill in the provided parameters.

Example:

>>> handler = lambda: None # just a bogus handler

>>> router = PathRouter ((’post’, ’/posts/{slug}’, handler))
>>> router.reverse ('post’, slug='my-post’)

" /posts/my-post’

match (template, path_info)
Check for a path match.
Parameters
* template — A Template object to match against.
« path_info — The path to check for a match.

Returns The template parameters extracted from the path, or None if the path does not match
the template.

Example:

>>> from potpy.template import Template

>>> template = Template ('’ /posts/{slug}’)

>>> PathRouter () .match (template, ’/posts/my-post’)
{"slug’: 'my-post’}

class potpy.wsgi.MethodRouter (*routes)
Bases: potpy.router.Router

Route by request method.

>>> from potpy.context import Context

>>> handlerl = lambda request_method: (1, request_method.lower())
>>> handler2 = lambda request_method: (2, request_method.lower())
>>> router = MethodRouter (

("POST", handlerl), # can specify a single method
(("GET", ’"HEAD’), handler2) # or a tuple of methods

cae)

>>> Context (request_method=’GET’) .inject (router)

(2, "get’)

>>> Context (request_method="POST’) .inject (router)

(1, ’"post’)

exception MethodNotAllowed (allowed_methods, request_method)
Bases: potpy.router.NoRoute

Raised instead of potpy.router.Router.NoRoute when no handler matches the given method.
Has an allowed_methods attribute which is a list of the methods handled by this router.

MethodRouter .match (methods, request_method)
Check for a method match.

Parameters

5.4. potpy.wsgi— WSGI module 17

potpy Documentation, Release 0.0.1

* methods — A method or tuple of methods to match against.
* request_method — The method to check for a match.

Returns An empty dict in the case of a match, or None if there is no matching handler for the
given method.

Example:

>>> MethodRouter () .match (('GET’, ’'HEAD’), ’"HEAD’)
{}

>>> MethodRouter () .match ('’ POST’, ’'DELETE’)

class potpy.wsqgi .App (router, default_context=None)
Wrap a potpy router in a WSGI application.

Use this with PathRouter and MethodRouter to implement a full-featured HTTP request routing sys-
tem. Return a WSGI app from the last handler in the route, and it will be called with environ and
start_response.

If no route matches, a 404 Not Found response will be generated. If using a MethodRouter, and the re-
quest method doesn’t match, a 405 Method Not Allowed response will be generated. Also responds to HTTP
OPTIONS requests.

Calls the provided router with a context containing environ, path_info, and request_method fields,
and any fields from the optional default_context argument.

Parameters
* router — The router to call in response to WSGI requests.

* default_context — Optional. A dict-like mapping of extra fields to add to the context for
each request.

Example:

>>> def my_app(environ, start_response):
start_response (/200 OK’, [(’Content-type’, ’'text/plain’)])
return [’'Hello, world!’]

>>> def handler (request) :
do something with the request
return my_app

>>> class Request (object):
def _ init_ (self, environ):
pass # wrap environ in a custom request object

>>> app = App(
PathRouter ((’ /hello’, lambda: my_app)),

{’ request’: Request} # add a Request object to context
e)
>>> app ({
"PATH_INFO’: ’/hello’,
"REQUEST_METHOD’ : 'GET’,
}, lambda status, headers: None) # bogus start_response

["Hello, world!’]

__call__ (environ, start_response)
Call the router as a WSGI app.

Constructs a Context object with environ, path_info, and request_method (extracted from
the environ), and any fields supplied in self.default_context.

18 Chapter 5. Module Listing

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict

potpy Documentation, Release 0.0.1

Calls the result of the router call as a WSGI app.

5.5 potpy.configparser — Config Parser module

Construct a WSGI router from a configuration file.

A configuration file consists of lines specifying URLs, request methods, and handlers, allowing construction of
PathRouter and MethodRouter instances using a hierarchical syntax.

At the top level, you specify URLs with optional names and parameter type converters. See the Template class
documentation for the converter and URL specification format.

foo /foo/{foo_id:\d+} (foo_id: int):

Following each URL is a list of handlers, one on each line. Handlers may also specify a name (in parentheses), in
which case the result of the handler is added to the routing context under that name.

read_foo (foo)
save_foo

It is also possible to specify request method handlers using » METHOD : blocks. Adjacent method blocks are com-
bined into a single Met hodRouter instance.

x GET, HEAD:
show_foo

* POST:
edit_foo

Exception handlers can be specified for a given handler by ending the handler line with a colon (:) and listing
exception types and handlers on the following lines.

read_foo (foo):
ValidationError, BadFooError: show_foo_errors
IOError: show_system_errors

Complete Example:

index /:
+ GET, HEAD:
views.index
article /{article_id:\d+} (article_id: int):
+ GET, HEAD:
views.show_article
* POST:
auth.require_user (user)
views.edit_article:
views.InvalidArticleError: views.show_article_errors
admin /admin/:
auth.require_admin (user) # run this regardless of request_method
* GET, HEAD:
views.admin_console

5.5.1 Module Contents

potpy.configparser.parse_config (lines, module=None)
Parse a config file.

5.5. potpy.configparser — Config Parser module 19

potpy Documentation, Release 0.0.1

Names referenced within the config file are found within the calling scope. For example:

>>> from potpy.configparser import parse_config
>>> class foo:
@staticmethod
def bar():
pass

>>> config = '’
/foo:
foo.bar

>>> router = parse_config(config.splitlines())
would find the bar method of the foo class, because foo is in the same scope as the call to parse_config.
Parameters
* lines — An iterable of configuration lines (an open file object will do).

* module — Optional. If provided and not None, look for referenced names within this object
instead of the calling module.

potpy.configparser.load_config (name="urls.conf’)
Load a config from a resource file.

The resource is found using pkg_resources.resource_stream(), relative to the calling module.
See parse_config () for config file details.

Parameters name — The name of the resource, relative to the calling module.

20 Chapter 5. Module Listing

http://packages.python.org/distribute/pkg_resources.html#basic-resource-access

CHAPTER
SIX

* genindex
* modindex

INDICES AND TABLES

21

potpy Documentation, Release 0.0.1

22 Chapter 6. Indices and tables

potpy.
potpy.
potpy.
potpy.
.wsgi, 16

potpy

configparser, 19
context, 11
router, 12
template, 15

PYTHON MODULE INDEX

23

	Installation
	Hello World Example
	More Examples
	Overview
	Module Listing
	potpy.context – Context module
	potpy.router – Router module
	potpy.template – Template module
	potpy.wsgi – WSGI module
	potpy.configparser – Config Parser module

	Indices and tables
	Python Module Index

